

Installation and operation instructions

NDS Single stage double suction Split casing centrifugal pump

Approvals

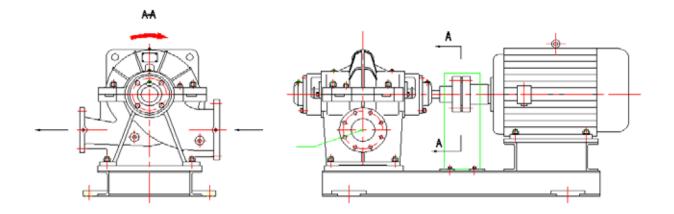
Contents

Brief Description	page	4
Structure drawing & Parts Identification		5
Assembly and Disassembly		7
Starting, checking ,stopping, running and maintenance		7
Troubleshooting		9

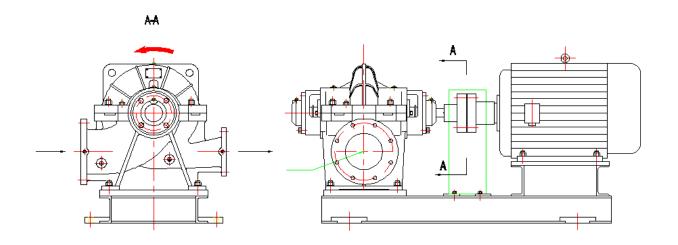
Brief Description

1. Brief Description

NDS horizontal double-suction split-casing pump is our advanced new product. Pump casing is in nice linearity design with stiffeners. The two bearings are located at a short distance, and the shaft is accordingly shortened. Shaft is fully sealed away from medium, no erosion, and high interchangeability. Closed circulate cooling system is applied to its inner seal housing, which makes NDS pump simple in structure and easy to maintain. NDS split-casing pumps are used far and wide in civil water supply, industry, construction, air-conditioning, irrigation, marine, fire fighting and power station.

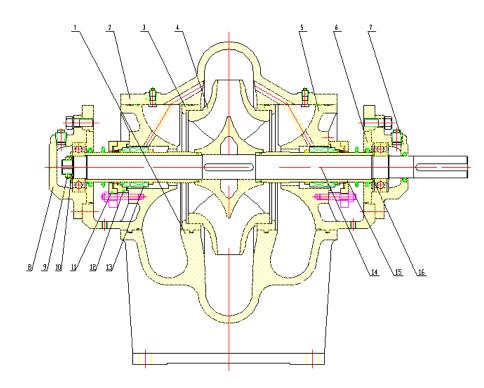

Design	German Standard		
Structure	Single-stage, Double-suction, Split-casing, Centrifugal pump		
Flange	DIN2501 (ISO7005.2 / GB/T17241.6 PN1.6) standard, ANSI B16.5		
	Class150lb optional		
Rotation	Standard Type: Clockwise viewing from the drive side		

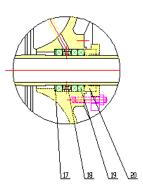
Material


Casing	Cast Iron standard, Ductile Iron, Stainless Steel optional		
Impeller	Bronze standard, Cast Iron, Stainless Steel optional		
Shaft	ASTM1045 standard, ASTM420, ASTM304, ASTM316 optional		
Shaft Seal	Mechanical Seal standard (Carbon-Ceramic/Viton standard,		
	Caron-Sic/Viton optional), Gland Packing optional		

Operating Data

Discharge diameter	80~600mm
Max Capacity	2000 1 / s
Max Head	170 m
Max Pressure	16 Bar standard
	25 Bar on request
Max Temperature	105°C




Special Type:Counter-clockwise viewing from the drive side

Structure drawing & Parts Identification

No.	Part Name	No.	Part Name
1	Casing	11	Seal Plate
2	Casing Cover	12	Seal Cover
3	Wear Ring	13	Mechanical Seal
4	Impeller	14	Shaft
5	Seal Housing	15	Shaft Sleeve
6	Bearing Cover	16	Bearing Pressing Ring
7	Drive-end Bearing Housing	17	Packing Pressing Ring
8	Non-Drive-end Bearing Housing	18	Seal Cage
9	Lock Nut	19	Gland Packing
10	Bearing Baffle	20	Gland Cover

Main Parts Material

No.	Part Name	Material	
1	Casing	HT200、HT250、QT400-18	
2	Casing Cover	HT200、HT250、QT400-18	
3	Wear Ring	HT200、HT250、QT400-18	
4	Impeller	HT250、H65、304、316	
5	Shaft	45、420、304、316	
6	Shaft Sleeve	420、304、316	

Assembly and Disassembly

2. Assembly and Disassembly

2.1. Rotor assembly

2.1.1) Set each O-ring into seal housing and plug, then screw on plug into seal housing, and then screw on seal housing bolts in advance.

2.1.2) Shape Shaft, impeller and shaft sleeve, knock key in to impeller position, set impeller onto shaft, and then fit wear rings and seal housings on the two ends of impeller.

2.1.3) Set O-ring and seal seat onto shaft sleeve, then screw on the two hexagon socket screws, then put on dynamic ring of mechanical seal, and fix shaft sleeve onto each end of shaft through seal housing. Press static ring of mechanical seal into seal cover, and place paper gasket. String seal covers, seal plates, slingers and bearing covers successively onto shaft through seal housing from the two ends. Fit bearing pressing ring, bearing and the other bearing pressing ring on the drive-end, then fix circlip for shaft, wear on drive-end bearing housing, screw on bolts. Fit bearing on non-drive-end, put on bearing baffle and lock washer, screw on lock nut, wear on non-drive-end bearing housing, screw on bolts, then rotor assembly is now complete.

2.2 General assembly

Screw on plugs and bolts on casing, fit rotor assembly on casing by engaging the rounded projections of seal casing and wear ring with their grooves in casing, then on put casing gasket, casing cover, insert dowel pin, screw on bolts and nuts then finish general assembly.

2.3 Disassembly: taking the counterturn of assembly.

3. Starting, Checking, Stopping, Running and Maintenance

3.1. Starting

1).Check that the direction of the motor rotation corresponds to the direction arrow on the pump casing before joint pump and motor together. Ensure that the pump is running freely without seizure or friction.

2).Turn down discharge valve.

3).Fill the pump with liquid or priming with a vacuum pump.

4).Switch on power, gradually turn up discharge valve after pump operation runs normally to achieve the target performance.

Caution: 3 minutes is the Max. continuous working time for a pump to operate with closed discharge valve.

3.2 Checking

1). Check direction of pump rotation, which should be clockwise viewing from the drive side.

2). Check alignment of the couplings both of pump and motor before using. Over-tolerance will damage flexible elements in a short time, and also cause over standard vibration as well as noise.

3). Check leakage of gland packing and tightness of gland cover; make them adequate to the job. If it is fitted with mechanical seal, make sure that the pump is operating with water inside; otherwise the dynamic and stationary rings would be worn out in dry operation

4). Check oil level, which should be kept in the specified range by oil gauge If it is grease, make sure that the bearings are filled with grease.

3.3 Stopping

1). Turn down discharge valve gradually, switch off the power.

2). Drain away water left inside the pump to avoid frost crack while the temperature is blew 0° C.

3). To keep a pump out of use for a long time, disassemble it into spare parts, store them in an appropriate place after lubrication.

3.4 Running and Maintenance

1). Readings by the meters are very important in starting and running. Care must be taken to heating, leakage, vibration and noise. Abnormal cases should be handled immediately on discovery.

2). Bearings are not allowed to work at the temperature 40° C higher than the temperature around, and the Max. temperature is 80° C.

3). In normal cases, a steady drip from the gland should be in a small amount, at about 60 drops per minutes while almost non-leakage from mechanical seal.

4). Lubrication should be 4# Calcium Base Grease or SAE20W Oil. Pumps working at 2900 rpm should be replenished with new oil or grease every period of 2500 working hours, 1450 rpm ones should be replenished every 5000 working hours. Ball bearings should be dismantled and replaced by the new ones every 10000 working hours, and also oil cup should be thoroughly cleaned out and filled with fresh lubrication.

Troubleshooting

4. Troubleshooting

Defects	Causes	Solutions
Pump not primed, both the	Not enough water filled in	Filled with water again
hands of vacuum gauge and	the pump	Fix the leakage
manometer switches	Air leakage in the pipe or	
violently	meters	
Pump not primed and high	Foot valve not open or	Check or replace the foot
degree vacuum indicated on	clogged	valve
the vacuum gauge	Suction resistance too high or	Clean or replace the inlet
	suction lift too high	pipe
		Reduce the suction lift
No water discharged while	Wrong direction of rotation	Check or shorten the pipe
outlet pressure is pointed by	Impeller clogged	Check the motor rotation
the manometer		Remove the pipe joint and
		clean the impeller
Lower capacity than	Pump clogged	Clean pump and pipes
specified value	Wear ring worn out	Replace the wear ring
Too much power consumed	Packing too tight	Loosen gland packing
by pump	Stuffing box too hot	Replace impeller
	Impeller worn out	Turn down discharge valve to
	Too large flow that the pump	reduce flow
	is working in.	
Abnormal noise inside the	Flow too large	Turn down discharge valve
pump	Resistance too high in the	Reduce flow
Pump not primed	inlet pipe	Fix leakage
	Suction lift too high	Lower liquid temperature
	Air leakage into the inlet pipe	
	Liquid temperature too high	
Bearings over-heart	Short of lubricant or	Filled with clean oil or grease
	lubricant too dirty	Align coupling centerline
	Pump shaft not in alignment	Replace bearing
	to that of the motor	
	Bearing worn out	
Vibration	Pump shaft not in alignment	Align coupling centerline
	to that of the motor	

Swiss Pump Company AG Moosweg 36 CH - 3645 Thun - Gwatt Switzerland Tel. +41 33 223 11 00 Fax +41 33 223 11 22 mail@swisspump.com

www.swisspump.com

